
The Sprite RPC Interface
hh

1. Introduction

This is a brief summary of the network interface to Sprite. This is done via a
description of each RPC used in the implementation. Most of the calls have to do with
the file system, although there are a few related to process migration, signals, and remote
waiting. The parameters of each RPC are specified, and a few words about the use of the
RPC are given. This is only a terse reference guide; there is not necessarily justification
or explanation included in the descriptions.

It is important to understand that this RPC interface is between two operating sys-
tem kernels. The terms ‘‘client’’ and ‘‘server’’ refer to instances of the kernel acting in
these roles. The term ‘‘application process’’ will be used when necessary to refer to the
process triggering the use of an RPC.

1.1. The RPC Protocol

It is useful to review the RPC protocol itself. The main thing to understand is that
the information included in each RPC request and reply is broken into three parts, a stan-
dard RPC header, a parameter area, and a data area. The actual size of the parameter and
data areas are extracted from the packet header and reported to the stub procedures. The
ID of the client is also reported to the server-side stub procedures. The stubs have to deal
with the distinct parameter and data areas. The parameter area is restricted to contain
only integers, while the data area can contain arbitrary data. The low-levels of the RPC
protocol handle communication between hosts of different byte order by automatically
byteswapping the RPC header and the parameter area when a packet is received from a
host with a different byte order. This means that both the client and server stubs can treat
the parameter area as a C structure (of integers), and not worry about alignment prob-
lems. If the data area is used for other than file data or strings, then the stub, or even a
higher-level procedure, has to do its own byteswapping.

Lastly, there is a return code from each RPC, with SUCCESS (zero) meaning success-
ful completion. Sprite return codes are defined in the file ‘‘/sprite/lib/include/status.h’’.

The complete set of RPCs used in the Sprite implementation is given in Table 1.
The number associated with the RPC is the procedure number used in the RPC packet
header. The RPCs are described in more detail below.

1.2. Source Code References

The RPC parameters described below are given as C typedefs. These have been
extracted from the C source code of the Sprite implementation. It may help to consult
the code in order to fully understand the use of a particular RPC. Most of the RPC stubs
are organized so the client and server stub for a given RPC are together along with the

2

iii
Sprite Remote Procedure Callsii

Procedure # Descriptioniii
ECHO_1 1 Echo. Performed by server’s interrupt handler (unused).
ECHO_2 2 Echo. Performed by Rpc_Server process.
SEND 3 Send. Like Echo, but data only transferred to server.
RECEIVE 4 Receive. Data only transferred back to client.
GETTIME 5 Broadcast RPC to get the current time.
FS_PREFIX 6 Broadcast RPC to find prefix server.
FS_OPEN 7 Open a file system object by name.
FS_READ 8 Read data from a file system object.
FS_WRITE 9 Write data to a file system object.
FS_CLOSE 10 Close an I/O stream to a file system object.
FS_UNLINK 11 Remove the name of an object.
FS_RENAME 12 Change the name of an object.
FS_MKDIR 13 Create a directory.
FS_RMDIR 14 Remove a directory.
FS_MKDEV 15 Make a special device file.
FS_LINK 16 Make a directory reference to an existing object.
FS_SYM_LINK 17 Make a symbolic link to an existing object.
FS_GET_ATTR 18 Get the attributes of the object behind an I/O stream.
FS_SET_ATTR 19 Set the attributes of the object behind an I/O stream.
FS_GET_ATTR_PATH 20 Get the attributes of a named object.
FS_SET_ATTR_PATH 21 Set the attributes of a named object.
FS_GET_IO_ATTR 22 Get the attributes kept by the I/O server.
FS_SET_IO_ATTR 23 Set the attributes kept by the I/O server.
FS_DEV_OPEN 24 Complete the open of a remote device or pseudo-device.
FS_SELECT 25 Query the status of a device or pseudo-device.
FS_IO_CONTROL 26 Perform an object-specific operation.
FS_CONSIST 27 Request that cache consistency action be performed.
FS_CONSIST_REPLY 28 Acknowledgement that consistency action completed.
FS_COPY_BLOCK 29 Copy a block of a swap file.
FS_MIGRATE 30 Tell I/O server that an I/O stream has migrated.
FS_RELEASE 31 Obsolete.
FS_REOPEN 32 Recover the state about an I/O stream.
FS_RECOVERY 33 Signal that recovery actions have completed.
FS_DOMAIN_INFO 34 Return information about a file system domain.
PROC_MIG_COMMAND 35 Used to transfer process state during migration.
PROC_REMOTE_CALL 36 Used to forward system call to the home node.
PROC_REMOTE_WAIT 37 Used to synchronize exit of migrated process.
PROC_GETPCB 38 Return process table entry for migrated process.
REMOTE_WAKEUP 39 Wakeup a remote process.
SIG_SEND 40 Issue a signal to a remote process.
FS_RELEASE_NEW 41 Tell source of migration to release I/O stream.iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1. The Remote Procedure Calls that are used in the Sprite implementation.

3

iii
Important Source Filesii

fs/fs.h Basic FS definitions.
fs/fsNameOps.h Definitions for the naming interface.
fsrmt/fsNameOpsInt.h More definitions for the naming interface.
fsrmt/fsrmtInt.h Definitions for the I/O interface.
fsrmt/fsSpriteDomain.c RPC stubs for the naming interface.
fsrmt/fsSpriteIO.c RPC stubs for the I/O interface
fsrmt/fsRmtAttributes.c RPC stubs for attribute handling.
fsrmt/fsRmtDevice. RPC stubs for remote devices.
fsrmt/fsRmtMigrate.c RPC stubs for migration.
fsio/fsStream.c RPC stub for migration callback.
fsconsist/fsCacheConsist.c RPC stubs for cache consistency.
fsutil/fsRecovery.c RPC stubs for state recovery.iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2. Important source files concerning the RPC interface to Sprite. The file names
are relative to the ‘‘/sprite/src/kernel’’ directory. This list isn’t guaranteed to be com-
plete. There are likely to be other definition files needed to fully resolve the parameter
definitions of an RPC. (All required definitions are given in this appendix.)

definition of their parameters. However, these definitions also include structures that are
common to the rest of the implementation and may be defined elsewhere. Table 2 has a
list of the ‘‘.c’’ files that contain most of the RPC stubs and the ‘‘.h’’ files that contain
most of the relevant typedefs. Finally, note that these structures are passed around within
the kernel as well as between kernels using RPC, and there are some structure fields that
are not valid during an RPC.

2. ECHO_2 This echoes data off another host. This operation is handled by an
Rpc_Server process, so it exercises the full execution path involved in a regular RPC.
(The unsupported ECHO_1 was used to echo off the interrupt handler.) This is used for
benchmarking the RPC system, and it is also used by the recovery module to verify that
another host is up. Equal amounts of data are transferred in both directions. The data is
uninterpreted, and it is put in the data area of the RPC packet.

3. SEND This transmits data to another host. This is just used for benchmarking the
RPC system. Data is only transferred one way, from the client to the server.

4. RECEIVE This receives data from another host. This is only used for benchmark-
ing the RPC system.

5. GETTIME This is a broadcast RPC used to get the time-of-day. This is used by
hosts during boot strap in order to set their clocks. The clock value is also used to set
their rpcBootID, which is included in the header of all subsequent RPC packets. This is
the first RPC done by a Sprite host, and the bootID in its RPC header is zero. The

4

parameters and data areas of the RPC request are empty. The parameter area of the reply
contains the following structure:

typedef struct RpcTimeReturn {
Time time;
int timeZoneMinutes;
int timeZoneDST;

} RpcTimeReturn;

The Time data type is defined as:

typedef struct Time {
int seconds;
int microseconds;

} Time;

The time is the number of seconds since Jan 1, 1970 in universal (GMT) time. The
timeZoneMinutes is the offset of the local timezone from GMT. The timeZoneDST is a
flag indicating if daylight savings time is allowed in the timezone (not if it is in effect at
the current date).

6. FS_PREFIX This is a broadcast RPC used to locate the server for a prefix. The
request parameter area is empty. The request data area contains the null-terminated
prefix, whose length can be determined from the RPC packet header’s dataLength field.
The reply data area is empty. The reply parameter area contains the following structure:

typedef struct FsPrefixReplyParam {
FsrmtUnionData openData;
Fs_FileID fileID;

} FsPrefixReplyParam;

The fileID identifies the root directory of the domain identified by the prefix. The client
should cache the mapping from the prefix to the fileID. It specifies this fileID as the
prefixID in lookup RPCs (FS_OPEN, etc.). The openData is used by Sprite clients to set
up internal data structures associated with an open I/O stream. The FsrmtUnionData
typedef is described under FS_OPEN. The Fs_FileID is defined as follows:

typedef struct Fs_FileID {
int type;
int serverID;
int major;
int minor;

} Fs_FileID;

The serverID is the Sprite hostID of the I/O server for the object. The major and minor
fields identify the object to the I/O server. The values for the type field are defined in
Table 3. With the FS_PREFIX RPC the returned type is either FSIO_RMT_FILE_STREAM for
regular Sprite file systems, or FSIO_PFS_NAMING_STREAM for pseudo-file-systems.

5

ii
Sprite Internal Stream Typesii

Name Descriptionii
0 FSIO_STREAM For top-level stream descriptor.
1 FSIO_LCL_FILE_STREAM Local file.
2 FSIO_RMT_FILE_STREAM Remote file.
3 FSIO_LCL_DEVICE_STREAM Local device.
4 FSIO_RMT_DEVICE_STREAM Remote device.
5 FSIO_LCL_PIPE_STREAM Anonymous pipe.
6 FSIO_RMT_PIPE_STREAM Remote anonymous pipe.
7 FSIO_CONTROL_STREAM Pseudo-device control stream.
8 FSIO_SERVER_STREAM Pseudo-device server stream.
9 FSIO_LCL_PSEUDO_STREAM Attached to a server stream.

10 FSIO_RMT_PSEUDO_STREAM Indirectly attached to a server stream.
11 FSIO_PFS_CONTROL_STREAM Records pseudo-file-system server.
12 FSIO_PFS_NAMING_STREAM Pseudo-file-system naming stream.
13 FSIO_LCL_PFS_STREAM Pseudo-file-system I/O stream.
14 FSIO_RMT_PFS_STREAM Remote Pseudo-file-system I/O stream.
15 FSIO_RMT_CONTROL_STREAM Fake type for GET_ATTR of a pseudo-device.
16 FSIO_PASSING_STREAM Fake type when passing open streams.iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3. The internal stream types used in the Sprite implementation. Most types have
corresponding local (LCL) and remote (RMT) types. The CONTROL and SERVER streams,
however, are always local because they are between the kernel and the pseudo-device or
pseudo-file-system server process. The PFS_NAMING stream is always remote. It is re-
turned in response to prefix broadcasts in the case of a pseudo-file-system. Some addi-
tional types are defined for use with the kernel’s internal I/O interface, and these are in-
cluded here for completeness.

7. FS_OPEN This is used to open a file system object in preparation for further I/O
operations. The parameters to an open RPC include a pathname, which may have several
components, and a file ID that indicates where the pathname starts. It also includes infor-
mation about how the object will be used, and identification of the user and the client
host that is doing the open. The reply to an open is one of two things. Ordinarily data is
returned that is used to set up data structures for an I/O stream to the object. Depending
on the type of object opened, which is specified in the reply, the reply contains different
data used for this purpose. However, it is also possible that the pathname leaves the
server’s domain, in which case a new pathname is returned to the client, and perhaps also
a new prefix. These details are described in more detail below.

7.1. FS_OPEN Request Format The request data area contains a null terminated path
name. The request parameter area contains the following structure:

typedef struct Fs_OpenArgs {
Fs_FileID prefixID;

6

Fs_FileID rootID;
int useFlags;
int permissions;
int type;
int clientID;
int migClientID;
Fs_UserIDs id;

} Fs_OpenArgs;

The prefixID specifies where the pathname begins. There are two cases for this. If the
client initially has an absolute pathname, then it can match this against its prefix cache
and use the fileID associated with the longest matching prefix. The prefix should be
stripped off before sending the pathname to the server. If the client initially has a relative
pathname, then the prefixID is the fileID associated with the current working directory.
This is obtained by a previous FS_OPEN RPC on the current directory. The rootID is a
prefix ID, and it is used to trap out pathnames that ascend out the root directory of a
domain. It is either the same as the prefixID, or it is the ID of the prefix that identifies the
domain of the current directory. Note that this supports implementation of chroot(), and
it also allows servers to export prefixes that don’t correspond to the ‘‘natural’’ root direc-
tory of a domain.

The permissions field contains the permission bits to set on newly created files.
These are defined in Table 4.

The type field constrains the type of object that can be opened. If the type is
FS_FILE, then any type can be opened. This is the way the FS_OPEN RPC is used by the
open() system call. However, FS_OPEN is also used in the implementation of readlink(),

iiiiiiiiiiiiiiiiiiiiiiiii
Permission Bitsii

FS_OWNER_READ 00400
FS_OWNER_WRITE 00200
FS_OWNER_EXEC 00100
FS_GROUP_READ 00040
FS_GROUP_WRITE 00020
FS_GROUP_EXEC 00010
FS_WORLD_READ 00004
FS_WORLD_WRITE 00002
FS_WORLD_EXEC 00001
FS_SET_UID 04000
FS_SET_GID 02000iiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4. Permission bits for the Fs_OpenArgs structure. These are octal values

7

symlink(), and mknod(). For these calls specific types are indicated so that the type of
the named file must match. (Warning, note the bug report concerning FS_REMOTE_LINK
and FS_SYMBOLIC_LINK in the last section of this appendix.) The types are defined in
Table 5, and they correspond to types in the file descriptors kept on disk.

The clientID is the hostID of the process doing the open. The migClientID is the
home node of a migrated process, which may be different than the clientID if a process
has migrated. This is used when opening devices so that a migrated process can open
devices on its home node. This only applies to device files with the FS_LOCALHOST_ID
serverID attribute. Device files with a specific host ID (>0) for their serverID attribute
always specify the device on that host. (See FS_MAKE_DEV below.)

The id field contains the user and group IDs of the process doing the open. The
Fs_UserIDs typedef is defined as follows:

#define FS_NUM_GROUPS 8

typedef struct Fs_UserIDs {
int user;
int numGroupIDs;
int group[FS_NUM_GROUPS];

} Fs_UserIDs;

The useFlags indicate how the object is going to be used. Valid useFlag bits are
defined in Table 6. They are divided into two sets, those passed into the Fs_Open system
call from user programs, and those set by the Sprite kernel for its own use. (For

iiiiiiiiiiiiiiiiiiiiiiii
File Descriptor Typesii

FS_FILE 0
FS_DIRECTORY 1
FS_SYMBOLIC_LINK 2
FS_REMOTE_LINK 3
FS_DEVICE 4
(not used) 5
FS_LOCAL_PIPE 6
FS_NAMED_PIPE 7
FS_PSEUDO_DEV 8
(not used) 9
(reserved for testing) 10iiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5. Types for disk-resident file descriptors. Also used for the type field in the
Fs_OpenArgs structure.

8

ii
Usage Flagsii

Value Name Description
0xfff FS_USER_FLAGS A mask used to prevent user pro-

grams from setting kernel bits.
0x001 FS_READ Open the object for reading.
0x002 FS_WRITE Open the object for writing.
0x004 FS_EXECUTE Open the object for execution, if it is

a regular file, or for changing the
current directory if it is a directory.

0x008 FS_APPEND Open the object for append mode
writing.

0x020 FS_PDEV_MASTER Open a pseudo-device as the server
process.

0x080 FS_PFS_MASTER Open a remote link as the server for
a pseudo-file-system.

0x200 FS_CREATE Create a directory entry for the ob-
ject if it isn’t there already.

0x400 FS_TRUNC Truncate the object after opening.
0x800 FS_EXCLUSIVE If specified with FS_CREATE, then the

open will fail if the object already
exists.

0xfffff000 FS_KERNEL_FLAGS Bits are set in this field by the client
kernel.

0x00001000 FS_FOLLOW Follow symbolic links when travers-
ing the pathname.

0x00004000 FS_SWAP The file is being used as a VM back-
ing file.

0x00010000 FS_OWNERSHIP Set when changing ownership or per-
mission bits. The server should veri-
fy that the opening process owns the
file.

0x00020000 FS_DELETE Set when deleting a file. (FS_UNLINK
RPC, not FS_OPEN.)

0x00040000 FS_LINK Set when creating a hard link.
(FS_LINK RPC, not FS_OPEN.)

0x00080000 FS_RENAME Set during rename. (FS_RENAME
RPC, not FS_OPEN.)iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 6. Values for the useflags field of Fs_OpenArgs and Fs_LookupArgs.

historical reasons the UNIX open() call is mapped to Fs_Open, and some of the flag bits
differ from the UNIX O_* flags, mainly the READ and WRITE bits.)

9

7.2. FS_OPEN Reply Format The data area of an FS_OPEN reply may contain a
returned pathname, in the case where the input pathname leaves the server’s domain.
This is indicated by the FS_LOOKUP_REDIRECT return code. If the returned name begins
with a ’/’ character then it has been expanded by the server and can be matched against
the client’s prefix table. If the prefixLength parameter (defined below) is non-zero then
the initial part of the expanded pathname is a domain prefix that should be added to the
client’s prefix table. The client should use the FS_PREFIX RPC to locate the domain’s
server. If the returned pathname begins with ‘‘../’’, then the client has to combine the
returned pathname with the prefix it used for the server’s domain as follows. (This
means a client implementation has to remember the domain prefix associated with a
current working directory.) If the prefix is ‘‘/a/b’’ and the returned pathname is ‘‘../x/y’’,
then these are combined into ‘‘/a/b/../x/y’’, which further reduces to ‘‘/a/x/y’’. Note this
no longer matches on the ‘‘/a/b’’ prefix.

The parameter area of the FS_OPEN reply contains data used to initialize the I/O
stream data structures. The format of the rely parameters is defined as follows:

typedef struct FsrmtOpenResultsParam {
int prefixLength;
Fs_OpenResults openResults;
FsrmtUnionData openData;

} FsrmtOpenResultsParam;

typedef struct Fs_OpenResults {
Fs_FileID ioFileID;
Fs_FileID streamID;
Fs_FileID nameID;
int dataSize;
ClientData streamData;

} Fs_OpenResults;

typedef union FsrmtUnionData {
Fsio_FileState fileState;
Fsio_DeviceState devState;
Fspdev_State pdevState;

} FsrmtUnionData;

The Fs_OpenResults contain three object identifiers, one for the object that was
opened, one for the I/O stream to that object (the streamID is type FSIO_STREAM), and
one for the file that names the object (the nameID is type FSIO_RMT_FILE_STREAM). For
devices and pseudo-devices the file that represents the name is different than the object
itself, and the nameID is used when getting the attributes of an object. The I/O stream
also has an identifier because I/O streams are passed between machines during process
migration. The rest of the data is type-specific and is described below.

typedef struct Fsio_FileState {
int cacheable;
int version;

10

int openTimeStamp;
Fscache_Attributes attr;
int newUseFlags;

} Fsio_FileState;

typedef struct Fscache_Attributes {
int firstByte;
int lastByte;
int accessTime
int modifyTime;
int createTime;
int userType;
int permissions;
int uid;
int gid;

} Fscache_Attributes;

The Fsio_FileState is returned when a regular file or directory is opened. In this
case the type in the ioFileID is FSIO_RMT_FILE_STREAM. The cacheable flag indicates if
the client can cache the file. The version number is used to detect stale data in the
client’s cache. The openTimeStamp should be kept and used later when handling
FS_CONSIST RPCs. (The openTimeStamp is redundant with respect to the version
number, and it may be eliminated in the future.) The Fscache_Attributes are a sub-set of
the file attributes stored at the file server. The lastByte, modifyTime and accessTime are
updated by the client if it caches the file. These attributes are pushed back to the server
at close time. (firstByte is unused. It is a vestige of a named pipe implementation.) The
permission bits and ownership IDs are used with setuid and setgid programs. The
newUseFlags are a modified version of the useFlags passed in the FS_OPEN request. The
client stores these in its I/O stream descriptor and does consistency checking on subse-
quent I/O operations by the user-level application.

typedef struct Fsio_DeviceState {
int accessTime;
int modifyTime;
Fs_FileID streamID;

} Fsio_DeviceState;

The Fsio_DeviceState is returned from the file server when a device is opened. The
type in the ioFileID is either FSIO_LCL_DEVICE_STREAM or FSIO_RMT_DEVICE_STREAM.
In the latter case, the client will pass the Fsio_DeviceState to the I/O server in a
FS_DEV_OPEN RPC. The accessTime and modifyTime are maintained at the I/O server.
(Currently they are never pushed back to the file server. This is bug.) The streamID is
the same as in the Fs_OpenResults, but it is included in Fsio_DeviceState so it can be
passed to the I/O server.

typedef struct Fspdev_State {
Fs_FileID ctrlFileID;

11

Proc_PID procID;
int uid;
Fs_FileID streamID;

} Fspdev_State;

The Fspdev_State is returned when a pseudo-device is opened. The type in the
ioFileID is FSIO_CONTROL_STREAM when the server process opens the pseudo-device. In
this case the Fspdev_State structure is not returned.

When any other process opens the pseudo-device then the type in the ioFileID is
either FSIO_LCL_PSEUDO_STREAM or FSIO_RMT_PSEUDO_STREAM. In the latter case the
client passes the Fspdev_State to the I/O server with a FS_DEV_OPEN RPC. The
ctrlFileID identifies the control stream of the server process. The procID and uid should
be filled in by the client before the FS_DEV_OPEN RPC. The streamID is the same as that
in the Fs_OpenResults, but it is included in Fspdev_State so it can be passed to the I/O
server. The I/O server sets up a shadow stream descriptor that matches the client’s.

When a process opens a file in a pseudo-file-system then the type in the ioFileID is
FSIO_RMT_PFS_STREAM. (If the pseudo-file-system server is on the same host as the pro-
cess doing the open, the the FS_OPEN RPC is not used, so the FSIO_LCL_PFS_STREAM is
not seen here.)

8. FS_READ This call is used to read data from a file system object. The data area of
the request message is empty. The parameter area of the request contains the following
structure.

typedef struct FsrmtIOParam {
Fs_FileID fileID;
Fs_FileID streamID;
Sync_RemoteWaiter waiter;
Fs_IOParam io;

} FsrmtIOParam;

typedef struct {
List_Links links;
int hostID;
Proc_PID pid;
int waitToken;

} Sync_RemoteWaiter;

typedef struct Fs_IOParam {
Address buffer;
int length;
int offset;
int flags;
Proc_PID procID;
Proc_PID familyID;

12

int uid;
int reserved;

} Fs_IOParam;

The fileID and the streamID together specify the I/O stream and the object it references.
These have been returned from a previous FS_OPEN RPC. The Sync_RemoteWaiter
structure contains information about the process in case the read operation would block,
in which case it is used in a subsequent REMOTE_WAKEUP RPC. (The links field of this
is not valid during the RPC.) The length in the Fs_IOParam indicates how much data is
to be read, and the offset indicates the byte offset at which to start the read. (The buffer
field is not valid during the RPC.) The flags are the flags from the I/O stream descriptor,
which are derived from the useFlags in FS_OPEN. The procID, familyID, and uid are used
for ownership checking by certain devices. The reserved field is currently unused, but
may eventually be used for a file’s version number.

The reply message for a read contains the data in the data area, and a Fs_IOReply in
the parameter area.

typedef struct Fs_IOReply {
int length;
int flags;
int signal;
int code;

} Fs_IOReply;

The length indicates the number of bytes returned. The flags indicate the select state of
the object. They are an or’d combination of the FS_READ, FS_WRITE, and FS_EXECUTE
bits defined above. The signal and code are used to return a signal from certain kinds of
devices. If non-zero, the signal field will result in that signal being sent to the application
process, along with the code that modifies the signal.

If the return code of the FS_READ RPC is FS_WOULD_BLOCK, then length may be
greater than or equal to zero. This indicates that less than the requested amount of data
was returned, and that the I/O server has saved the Sync_RemoteWaiter information. A
REMOTE_WAKEUP RPC will be generated by the I/O server when the object becomes
readable.

9. FS_WRITE This is similar to the FS_READ RPC, except that the request data area
contains the data to be transfered. The request parameters are the same as for FS_READ.
The reply parameters are also the same. If the I/O server doesn’t accept all the data
transferred to it then the client will block the application process if FS_WOULD_BLOCK is
returned. Otherwise a short write and a SUCCESS error code will prompt an immediate
retry of the rest of the data.

There are some additional flags in the Fs_IOParam structure that pertain to writes.
These are described below.

0x00100000 FS_CLIENT_CACHE_WRITE
When a client writes back data from its cache this flag is set. In this case the file

13

server does not reset the modify time because the client maintains the modify time
while caching the file.

0x02000000 FS_LAST_DIRTY_BLOCK
This is set when a client is writing back its last block for a particular file. At the
receipt of the last block a server in write-back-ASAP mode will schedule the file to
be written to disk, although the RPC will return before the file actually gets to disk.

0x10000000 FS_WB_ON_LDB
This tells the server to write through the file if it is the last dirty block. This will
appear with FS_LAST_DIRTY_BLOCK. At the receipt of a block marked with
this flag the server will block until the file is written through, and the RPC will
return after the file is on disk.

10. FS_CLOSE When the last process using an I/O stream closes its reference, then an
FS_CLOSE RPC is made to the I/O server. The request data area is empty. The request
parameter area is described below. The reply message has no data or parameters, only a
return code.

typedef struct FsRemoteCloseParams {
Fs_FileID fileID;
Fs_FileID streamID;
Proc_PID procID;
int flags;
FsCloseData closeData;
int closeDataSize;

} FsRemoteCloseParams;

typedef union FsCloseData {
Fscache_Attributes attrs;

} FsCloseData;

The fileID is the ioFileID from the FS_OPEN RPC. The streamID is also from the
FS_OPEN RPC. The procID identifies the process doing the close. The flags are the flags
from the stream descriptor, and they may also include the FS_LAST_DIRTY_BLOCK and
FS_WB_ON_LDB flags if a file is in write-back-on-close mode. The closeData is a type-
specific union used to propagate attributes back to the file server at close time. Currently
this is only implemented for regular files, in which case the closeData the
Fscache_Attributes already described. (It should also be implemented for devices, but
the file server is not contacted at close time for devices.) The closeDataSize is the
number of valid bytes in the closeData union.

11. FS_UNLINK This RPC is used to remove a directory entry for an object. When
the last directory entry that references an object is removed, the underlying object is
deleted. However, if the object is still referenced by an open I/O stream then the deletion
is postponed until the I/O stream is closed. The request data area contains a null ter-
minated pathname. The request parameter area contains an Fs_LookupArgs record,

14

which is a sub-set of the Fs_OpenArgs record previously defined.

typedef struct Fs_LookupArgs {
Fs_FileID prefixID;
Fs_FileID rootID;
int useFlags;
Fs_UserIDs id;
int clientID;
int migClientID;

} Fs_LookupArgs;

The reply to an RPC_UNLINK is ordinarily only a return code. However, as with all opera-
tions on pathnames, the server may return a new pathname if the input pathname leaves
its domain. In this case the return code is FS_LOOKUP_REDIRECT, and the return data area
contains the new pathname (see NB below), and the return parameter area contains an
integer indicating the length of the prefix embedded in the returned pathname, or zero.
NB: For implementation reasons, the return data area also contains room for the prefix
length (4 bytes) in front of the returned pathname. See FS_OPEN for a fuller explanation
of FS_LOOKUP_REDIRECT.

12. FS_RENAME This is an operation on two pathnames, and it is used to change the
name of an object in the file system. The request parameters include the Fs_LookupArgs
previously defined, plus another fileID for the prefix of the second pathname. The data
area contains two pathnames, and currently this is defined as two maximum length char-
acter arrays.

typedef struct Fs_2PathParams {
Fs_LookupArgs lookup;
Fs_FileID prefixID2;

} Fs_2PathParams;

#define FS_MAX_PATH_NAME_LENGTH 1024

typedef struct Fs_2PathData {
char path1[FS_MAX_PATH_NAME_LENGTH];
char path2[FS_MAX_PATH_NAME_LENGTH];

} Fs_2PathData;

There can also be a pathname redirection during a FS_RENAME, in which case the return
code is FS_LOOKUP_REDIRECT, and the return data area has the returned pathname.
Again, for implementation reasons two fields in the parameter area (Fs_2PathReply) are
repeated in the data area before the returned pathname (Fs_2PathRedirectInfo). The
name1ErrorP flag that is returned indicates whether the error code applies to the first
name (if name1ErrorP is non-zero), or to the second pathname. (Please excuse the fact
that prefixLength and name1ErrorP occur in opposite orders! ugh. The
Fs_2PathRedirectInfo is passed around the kernel internally, and these two fields are
copied into the parameter area so they get byteswapped correctly.)

typedef struct Fs_2PathReply {

15

int prefixLength;
Boolean name1ErrorP;

} Fs_2PathReply;

typedef struct Fs_2PathRedirectInfo {
int name1ErrorP;
int prefixLength;
char fileName[FS_MAX_PATH_NAME_LENGTH];

} Fs_2PathRedirectInfo;

Note that redirection makes lookups involving two pathnames slightly more complicated
than an operation on a single pathname. A Sprite client will use its prefix cache to get
the prefixFileID for both pathnames, and they may specify different servers. The client
always directs the FS_RENAME (or FS_LINK) to the server for the first pathname. If the
second pathname is also in the same domain then the FS_RENAME (or FS_LINK) can com-
plete with a single RPC. If the first pathname leaves the server’s domain, the server
returns FS_WOULD_BLOCK and sets name1ErrorP to a non-zero value. If the second path-
name begins in the server’s domain but subsequently leaves it, the server returns
FS_WOULD_BLOCK and sets name1ErrorP to zero. If the second pathname doesn’t begin
in the server’s domain, it returns FS_CROSS_DOMAIN_OPERATION. At this point the client
does a FS_GET_ATTR on the parent of the second pathname to make sure that further
redirections do not lead the second pathname back to the server’s domain. The name of
the parent is easily computed by trimming off the last component of the second path-
name. If the FS_GET_ATTR gets a redirect the client reiterates, otherwise the FS_RENAME
(or FS_LINK) fails.

13. FS_MKDIR This is used to create a directory. The request data is a null ter-
minated pathname. The request parameters are the Fs_OpenArgs described above for
FS_OPEN, with the type equal to FS_DIRECTORY. If the return code is
FS_LOOKUP_REDIRECT, then the reply data is a new pathname (again preceded by 4 bytes
of junk), and the reply parameters is the length of the embedded prefix.

14. FS_RMDIR This is used to remove a directory. The request data is a null ter-
minated pathname. The request parameters are the Fs_LookupArgs described above for
FS_UNLINK. If the return code is FS_LOOKUP_REDIRECT, then the reply data is a new
pathname (again preceded by 4 bytes of junk), and the reply parameters is the length of
the embedded prefix.

15. FS_MKDEV This is used to create a device file. The request data is a null ter-
minated pathname. The request parameters, Fs_MakeDeviceArgs, are defined below. If
the return code is FS_LOOKUP_REDIRECT, then the reply data is a new pathname (again
preceded by 4 bytes of junk), and the reply parameters is the length of the embedded
prefix.

16

typedef struct Fs_MakeDeviceArgs {
Fs_OpenArgs open;
Fs_Device device;

} Fs_MakeDeviceArgs;

typedef struct Fs_Device {
int serverID;
int type;
int unit;
ClientData data;

} Fs_Device;

The Fs_MakeDeviceArgs are a slight super-set of the Fs_OpenArgs. They additionally
contain a Fs_Device structure that defines the server, type, and unit of the peripheral dev-
ice. (The data field is not used in the RPC.) The serverID is a Sprite Host ID. If the spe-
cial value FS_LOCALHOST_ID is used, then this device file always specifies the device
attached to the local host. Otherwise, it specifies a devices at a particular host.

#define FS_LOCALHOST_ID -1

Some of the device types are defined in Table 7, although this list is not guaranteed to be
complete. These types are defined in <kernel/dev/devTypes.h>. The unit number is dev-
ice specific, and no attempt is made to specify them here. (For example, the ethernet
device encodes the protocol number in the unit. The SCSI devices encode the controller
number, target ID, and LUN.)

iiiiiiiiiiiiiiiiiiiiiiiii
Device Typesii

DEV_TERM 0
DEV_SYSLOG 1
DEV_SCSI_WORM 2
DEV_PLACEHOLDER_2 3
DEV_SCSI_DISK 4
DEV_SCSI_TAPE 5
DEV_MEMORY 6
DEV_XYLOGICS 7
DEV_NET 8
DEV_SCSI_HBA 9
DEV_RAID 10
DEV_DEBUG 11
DEV_MOUSE 12iiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7. Definitions for device types.

17

16. FS_LINK This creates another directory entry to an existing object. The two
objects are restricted to be within the same file system domain. The request and reply
messages have the same format as FS_RENAME. This is an operation on two pathnames,
and the comments regarding pathname redirection from FS_RENAME apply.

17. FS_SYM_LINK This is defined but not yet supported. Instead, symbolic links and
remote links are created by creating a file using FS_OPEN and type FS_SYMBOLIC_LINK or
FS_REMOTE_LINK, and then writing the value of the link with FS_WRITE. This should
change because it interacts poorly with systems that have a different format for their
remote links. (For example, for no good reason Sprite includes a null character in its
implementation of symbolic links, while UNIX does not. NFS access to Sprite are con-
fused by this, and it is possible to create bad symbolic links on an NFS server via the
Sprite NFS pseudo-file-system.)

18. FS_GET_ATTR This is used to get the attributes of the object behind an open I/O
stream. The parameter area of the request contain a Fs_FileID, which has been defined
above. This is the same as the ioFileID returned from an FS_OPEN. The request and
reply data areas are empty. The reply parameter area contains a Fs_Attributes structure
defined below.

typedef struct Fs_Attributes {
int serverID;
int domain;
int fileNumber;
int type;
int size;
int numLinks;
unsigned int permissions;
int uid;
int gid;
int devServerID;
int devType;
int devUnit;
Time createTime;
Time accessTime;
Time descModifyTime;
Time dataModifyTime;
int blocks;
int blockSize;
int version;
int userType;
int pad[4];

} Fs_Attributes;

18

19. FS_SET_ATTR This is used to set the attributes of an object behind an I/O stream.
The request parameters contain the FsRemoteSetAttrParams structure, which is defined
below. The request data area, reply data area, and reply parameter area are all empty.

typedef struct FsRemoteSetAttrParams {
Fs_FileID fileID;
Fs_UserIDs ids;
Fs_Attributes attrs;
int flags;

} FsRemoteSetAttrParams;

The fileID identifies the object, and was returned as the ioFileID from the FS_OPEN RPC.
The Fs_UserIDs structure is needed to verify that the attributes can be changed, and this
has been defined above with FS_OPEN. The flags field indicates which attributes are to be
set. These flags are described in Table 8.

20. FS_GET_ATTR_PATH This is used to get the attributes of a file system object
from the file server. This is an operation on a pathname, so the request data area contains
a null terminated pathname. The request parameters are the Fs_OpenArgs previously

iii
Set Attribute Flagsii

Value Name Descriptioniii
0x1F FS_SET_ALL_ATTRS Set all the attributes possible. See

the following definitions.
0x01 FS_SET_TIMES Set the access and modify times.

Used to implement UNIX utimes().
0x02 FS_SET_MODE Set the permissions. Used to imple-

ment UNIX chmod().
0x04 FS_SET_OWNER Set the owner and group. If either of

the gid and uid fields in the
Fs_Attributes structure are -1, then
they are not changed.

0x08 FS_SET_FILE_TYPE Set the user-defined file type. The
user-defined types currently in use
are defined in the next table.

0x10 FS_SET_DEVICE Set the device attributes. Used to
implement Fs_MakeDevice (UNIX
mknod()).iiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 8. Values for the flags field in FsRemoteSetAttrParams.

19

iii
User-defined File Typesii

FS_USER_TYPE_UNDEFINED 0 Not used.
FS_USER_TYPE_TMP 1 Temporary file.
FS_USER_TYPE_SWAP 2 VM swap file.
FS_USER_TYPE_OBJECT 3 Program object file.
FS_USER_TYPE_BINARY 4 Complete program image.
FS_USER_TYPE_OTHER 5 Everything else.iiicc
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c

Table 9. Values for the user-defined file type attribute.

described. The reply parameters are a Fs_GetAttrResultsParam structure, which is
defined below. If the return code is FS_LOOKUP_REDIRECT, then the reply data area con-
tains a returned pathname. NB: in this case there is no 4 bytes of padding in the data
area! (Sorry for this ugly inconsistency.)

typedef union Fs_GetAttrResultsParam {
int prefixLength;
struct AttrResults {
Fs_FileID fileID;
Fs_Attributes attrs;
} attrResults;

} Fs_GetAttrResultsParam;

The prefixLength is returned with the FS_LOOKUP_REDIRECT status. Otherwise, the
fileID is the same as the ioFileID returned from an FS_OPEN, and this is used to do a
FS_GET_IO_ATTR RPC with the I/O server. The Fs_Attributes structure has been defined
above.

21. FS_SET_ATTR_PATH This is used to set the attributes of a named file system
object. The request data area contains a null terminated pathname. The request parame-
ters are defined below. The reply data area contains a new pathname if the return code is
FS_LOOKUP_REDIRECT. (No padding bytes.) The reply data area contains a
Fs_GetAttrResultsParam structure which has been defined above. If
FS_LOOKUP_REDIRECT is returned then only the prefixLength is defined in the
Fs_GetAttrResultsParam.

typedef struct Fs_SetAttrArgs {
Fs_OpenArgs openArgs;
Fs_Attributes attr;
int flags;

} Fs_SetAttrArgs;

Each of these fields have been described above. The flags define which attributes to set.
See FS_SET_ATTR for a description.

20

22. FS_GET_IO_ATTR This is used to get the attributes that are maintained by the
I/O server, typically the access and modify times. The general approach to getting attri-
butes is to first contact the file server (with either FS_GET_ATTR or FS_GET_ATTR_PATH)
to get the initial version of the attributes, and then use this RPC to get the most up-to-date
access and modify times. This is only applicable to remote devices and remote pseudo-
devices.

The request parameter area contains a Fs_GetAttrResultsParam that has been initial-
ized by a FS_GET_ATTR or FS_GET_ATTR_PATH RPC. The reply parameter area contains
a Fs_Attributes structure. The request and reply data areas are empty.

23. FS_SET_IO_ATTR This is used to update the attributes that are maintained by the
I/O server, typically the access and modify times. Setting attributes is structured the
same as with getting them, so the file server is contacted first (with FS_SET_ATTR or
FS_SET_ATTR_PATH). The complete attributes are returned from these calls, and then
used as the request parameters in this RPC.

The request message contains a FsRemoteSetAttrParams structure, which is defined
below. The request data area, the reply parameter area, and the reply data area are
empty.

typedef struct FsRemoteSetAttrParams {
Fs_FileID fileID;
Fs_UserIDs ids;
Fs_Attributes attrs;
int flags;

} FsRemoteSetAttrParams;

The fileID identifies the object, and is the same as the ioFileID returned from an FS_OPEN
RPC. The Fs_UserIDs and Fs_Attributes have been described above. The flags indicate
what attributes to set, and these are indicated above as well.

24. FS_DEV_OPEN This is used to complete an Fs_Open (UNIX open()) of a remote
device or remote pseudo-device. This is done after an FS_OPEN RPC has returned an
ioFileID with a type of FSIO_RMT_DEVICE_STREAM or FSIO_RMT_PDEV_STREAM. The
request parameter area contains a FsDeviceRemoteOpenParam structure, which is
defined below. The reply parameter area contains a new ioFileID so the I/O server can
modify this if it wants to. The request and reply data areas are empty.

typedef struct FsDeviceRemoteOpenParam {
Fs_FileID fileID;
int useFlags;
int dataSize;
FsrmtUnionData openData;

} FsDeviceRemoteOpenParam;

The fileID is the ioFileID returned from FS_OPEN. The useFlags are the newUseFlags
returned from FS_OPEN. The dataSize indicates the number of valid bytes in openData.

21

The FsrmtUnionData has been described previously.

25. FS_SELECT This RPC is used to poll a remote I/O server to determine if an object
is ready for I/O. The input parameters include a fileID that identifies the object, three
fields that correspond to the read, write, and execute state of the object, and process
information used for remote waiting. If a field is non-zero it means an application is
querying that state. The return parameters contains copies of these fields, and the I/O
server should clear a field to zero if that state is not applicable. In this case, the I/O
server should save the Sync_RemoteWaiter information so it can notify the waiting pro-
cess when the objects state changes.

typedef struct FsRemoteSelectParams {
Fs_FileID fileID;
int read;
int write;
int except;
Sync_RemoteWaiter waiter;

} FsRemoteSelectParams;

typedef struct FsRemoteSelectResults {
int read;
int write;
int except;

} FsRemoteSelectResults;

NB: The read, write, and except fields are defined to be zero or non-zero, and the fields in
the result should be exact copies of the request fields, or they should be reset to zero. (If
non-zero they happen to be the bit that corresponds to the bit in the select mask. It is
only appropriate to copy the bit or clear it. Don’t blindly set the reply fields to 1.)

26. FS_IO_CONTROL This is used to do an object-specific operation. A number of
generic I/O controls are defined below, and the implementation of different objects are
free to define more I/O controls. The request parameter area contains a FsrmtIOCParam
structure, which is defined below. The reply parameter area contains a Fs_IOReply
structure that defines the amount of data returned, and a signal to generate, if any. The
request and reply data areas contain data blocks that are uninterpreted by generic kernel
code. In particular, they cannot be byteswapped except by the implementation of the I/O
control handler. The parameters include a byteOrder field so the handler can detect a
mismatch. In this case it should byteswap in the request data block so it can properly
interpret it, and also byteswap the reply datablock so the application process on the
remote client can properly interpret it.

typedef struct FsrmtIOCParam {
Fs_FileID fileID;
Fs_FileID streamID;
Proc_PID procID;

22

Proc_PID familyID;
int command;
int inBufSize;
int outBufSize;
Fmt_Format format;
int uid;

} FsrmtIOCParam;

The fileID and streamID have been returned by FS_OPEN. The procID and familyID
identify the process and its process group. The sizes indicate how much data is being
sent to the I/O server and the maximum amount that can be accepted in return. The for-
mat defines a byte ordering, and it is used in conjunction with the Format library package
to do byteswapping. The uid specifies the user ID of the application process. The com-
mand is the I/O control operation, and the generic ones are defined below.

1 IOC_REPOSITION
Reposition the current access position of the I/O stream. The input data block con-
tains the following structure to define the new access position.

#define IOC_BASE_ZERO 0
#define IOC_BASE_CURRENT 1
#define IOC_BASE_EOF 2

typedef struct Ioc_RepositionArgs {
int base;
int offset;

} Ioc_RepositionArgs;

2 IOC_GET_FLAGS
Return the flag bits associated with an I/O stream. The reply data block contains an
integer with the flag bits. The following bits are defined for all objects, although
other objects may define more flags.

#define IOC_GENERIC_FLAGS 0xFF
#defineIOC_APPEND 0x01
#define IOC_NON_BLOCKING 0x02
#define IOC_ASYNCHRONOUS0x04
#define IOC_CLOSE_ON_EXEC0x08

3 IOC_SET_FLAGS
Set the flags on an I/O stream. The request data block contains an integer which is
to be new version of the flag word. It completely replaces the old flag word.

4 IOC_SET_BITS
Set individual bits in the flags word of an I/O stream. The request data block con-
tains an integer with the desired bits set.

5 IOC_CLEAR_BITS
Clear individual bits in the flags word of an I/O stream. The request data block con-
tains an integer with the desired bits set.

23

6 IOC_TRUNCATE
Truncate an object to a specified length. The input data block contains an integer
which is the desired length.

7 IOC_LOCK
Place an advisory lock on an object. Used to implement UNIX flock(). The request
data block contains the following structure. If the lock cannot be obtained then
FS_WOULD_BLOCK should be returned and the process information should be saved
at the I/O server for a subsequent REMOTE_WAKEUP RPC back to the client.

typedef struct Ioc_LockArgs {
int flags;
int hostID;
Proc_PID pid;
int token;

} Ioc_LockArgs;

#define IOC_LOCK_SHARED 0x1
#define IOC_LOCK_EXCLUSIVE 0x2
#define IOC_LOCK_NO_BLOCK 0x8

The flag bits are defined above, and specify if the lock should be exclusive, in which
case it is blocked by either an existing exclusive lock or by a shared lock, or
whether it is a shared lock, in which case it can co-exist with other shared locks but
not an exclusive lock. If IOC_LOCK_NO_BLOCK is set then the application process
will not be blocked by the client in the case of FS_WOULD_BLOCK, so the I/O server
doesn’t have to remember the process information.

8 IOC_UNLOCK
Remove an advisory lock on an object. The complement of IOC_LOCK.

9 IOC_NUM_READABLE
Returns the number of bytes available on an I/O stream. The input data block con-
tains the current offset of the stream. The return data block contains the number of
bytes available on the stream.

10 IOC_GET_OWNER
Returns the owner of an I/O stream, which is either a process or a process group.
The return data block contains the following structure, along with definitions for the
procOrFamily field.

#define IOC_OWNER_FAMILY 0x1
#define IOC_OWNER_PROC 0x2

typedef struct Ioc_Owner {
Proc_PID id;
int procOrFamily;

} Ioc_Owner;

11 IOC_SET_OWNER
This defines the owner of an I/O stream. The request data block contains the

24

Ioc_Owner structure.

12 IOC_MAP
Obsolete, superseded by IOC_MMAP_INFO.

13 IOC_PREFIX
This returns the prefix under which a stream was opened. This is used to implement
the getwd() library call. The reply data block contains the prefix, which is null ter-
minated.

14 IOC_WRITE_BACK
This is used to write-back a range of bytes of a file to the server’s disk. The cache
will align the write-back on block boundaries that include the specified range of
bytes. The request data area contains the following structure.

typedef struct Ioc_WriteBackArgs {
int firstByte;
int lastByte;
Boolean shouldBlock;

} Ioc_WriteBackArgs;

15 IOC_MMAP_INFO
Tell the I/O server that a client is mapping a stream into memory. The request data
area contains the following structure. The isMapped field is 0 if the client is
unmapping the stream, and 1 if it is mapping the stream.

typedef struct Ioc_MmapInfoArgs {
int isMapped;
int clientID;

} Ioc_MmapInfoArgs;

((1<<16)-1) IOC_GENERIC_LIMIT
The Sprite kernel reserves the numbers below this for generic I/O control com-
mands. Other device drivers and pseudo-device servers define their own I/O con-
trols. Look at the README file ‘‘/sprite/src/include/dev/README’’ for details.

27. FS_CONSIST This is issued by a file server as a side effect of an FS_OPEN RPC. It
is a command to a client (not the one doing the FS_OPEN) to control its cache so that
future accesses see consistent data. The request parameter area contains the following
structure, and the request data area, reply data area, and reply parameter area are empty.
The client should respond immediately to this RPC and perform the cache consistency
actions in the background. The client issues a FS_CONSIST_REPLY RPC to the server
when it has completed the requested actions. This is a crude way of doing parallel RPCs
to many clients. The server sets up a short timeout (about 1 minute) for the client to
complete its actions, and it will let an open complete anyway if this timeout expires and a
rogue client has not responded to a consistency request.

typedef struct ConsistMsg {
Fs_FileID fileID;
int flags;

25

int openTimeStamp;
int version;

} ConsistMsg;

The fileID identifies the file, and it is the same as the ioFileID returned from the FS_OPEN
RPC. The flags are explained below, and they indicate what action the client should take.
The openTimeStamp is the time stamp that the server thinks corresponds to the last open-
TimeStamp it returned to the client. The version should match with the last version
returned to the client in the Fsio_FileState. (It will eventually replace the openTimeS-
tamp altogether.) The point of the openTimeStamp is that if two clients open the same
file at the same time, then the reply to one client’s FS_OPEN may loose a race with a
FS_CONSIST RPC generated by the second client’s open. If a client receives a
FS_CONSIST RPC with an openTimeStamp ‘‘in the future’’ it drops the consistency
request and returns FAILURE (1). This forces the file server to retry the FS_CONSIST call,
giving the reply to the FS_OPEN a chance to arrive at the client. The consistency actions
are defined below.

0x01 FSCONSIST_WRITE_BACK_BLOCKS
The client should write back any dirty blocks that are lingering in its cache.

0x02 FSCONSIST_INVALIDATE_BLOCKS
The client should stop caching the file because it is now concurrently write shared
by different hosts. All future I/O operations on this file should bypass the client
cache and go through to the file server.

0x04 FSCONSIST_DELETE_FILE
This is issued as a side effect of a FS_REMOVE RPC if the client has dirty blocks for
the file. This is done even if it is the same client as the one currently making the
FS_REMOVE RPC.

0x08 FSCONSIST_CANT_CACHE_NAMED_PIPE
This is reserved for if we ever re-implement named pipes.

0x10 FSCONSIST_WRITE_BACK_ATTRS
The client should write-back its notion of the access and modify times of the file
that it is caching. This is generated as a side effect of FS_GET_ATTR and
FS_GET_ATTR_PATH RPCs by other clients. This is only done if the client is
actively using the file, and it is suppressed if the client only has the file open for
execution. The attributes are returned with the FS_CONSIST_REPLY RPC.

28. FS_CONSIST_REPLY This is issued by the client when it has completed the con-
sistency actions requested by the server. The request parameter area contains the follow-
ing structure.

typedef struct ConsistReply {
Fs_FileID fileID;
Fscache_Attributes cachedAttr;
ReturnStatus status;

} ConsistReply;

The fileID indicates the file that was acted on. The client always returns its notion of the

26

attributes of the file because it updates these while caching the file. The status indicates
whether it could comply with the request. If the server’s disk is so full that a write-back
could not be made then this status is FS_DISK_FULL. The data is not lost, but it lingers in
the client’s cache until the write-back can succeed. However, this means that an open()
can fail with a disk full error!

29. FS_COPY_BLOCK This is used during fork() to copy a swap file on the file
server. This prevents the client from reading a swap file over the network just to copy it
and write it back. The request parameter area contains the following structure, and the
request data area, reply parameter area, and reply data area are empty.

typedef struct FsrmtBlockCopyParam {
Fs_FileID srcFileID;
Fs_FileID destFileID;
int blockNum;

} FsrmtBlockCopyParam;

The srcFileID and destFileID have been returned from FS_OPEN when the swap files were
opened. The blockNum specifies the FS_BLOCK_SIZE (4096 bytes) block to copy. This is
a logical block number because the client has no notion of where the swap files live on
disk.

30. FS_MIGRATE This is used during process migration to inform the I/O server that
an I/O stream has migrated to a new client. This is invoked from the destination client as
part of creating the process. The request parameter area contains the following structure.

typedef struct Fsio_MigInfo {
Fs_FileID streamID;
Fs_FileID ioFileID;
Fs_FileID nameID;
Fs_FileID rootID;
int srcClientID;
int offset;
int flags;

} Fsio_MigInfo;

This information is packaged up on the source client when the process migrates away.
The streamID, ioFileID, and nameID are those that have been returned from a previous
FS_OPEN. The rootID was specified in the FS_OPEN request that created the stream. The
srcClientID is the client were the process left. The offset field was made obsolete by the
FS_RELEASE_NEW and should be removed. The flags are the flags from the stream.

The reply parameter area of the FS_MIGRATE RPC contains the following structure.
The request and reply data areas are empty.

typedef struct FsrmtMigParam {
int dataSize;
FsrmtUnionData data;

27

FsrmtMigrateReplymigReply;
} FsrmtMigParam;

typedef struct FsrmtMigrateReply {
int flags;
int offset;

} FsrmtMigrateReply;

#define FS_RMT_SHARED 0x04000000

The I/O server returns the same FsrmtUnionData as it does in an FS_OPEN RPC, and the
client uses this to set up its I/O stream data structures. The I/O server also tells the client
the new stream offset to use, and it gives the client a new version of the stream flags. If
the flags in include the FS_RMT_SHARED bit then processes on different hosts are sharing
the stream. In this case the offset in the clients’ stream descriptors are not valid, and I/O
operations on the object have to go through to the I/O server. The I/O server keeps a sha-
dow stream descriptor that contains the valid stream offset in this case.

31. FS_RELEASE This procedure is obsolete.

32. FS_REOPEN This is used during the state recovery protocol to inform the I/O
server about I/O streams in use by a client. The request and reply parameter areas vary
depending on the object being reopened. The following structures are possible, although
note that every request structure contains a Fs_FileID as its first element. Also, the client
should map its FSIO_RMT stream types to the corresponding FSIO_LCL stream types before
making the RPC.

typedef struct FsRmtDeviceReopenParams {
Fs_FileID fileID;
Fsutil_UseCounts use;

} FsRmtDeviceReopenParams;

typedef struct Fsutil_UseCounts {
int ref;
int write;
int exec;

} Fsutil_UseCounts;

The reopen parameters identify the object and specify how many streams the client has to
it. Note that the ref field in Fsutil_UseCounts is not the same as the number of reading
streams, but it is the total number of streams. This is a mistake and will be fixed eventu-
ally; it makes it impossible for a reader to reopen ‘‘/dev/syslog’’, which is a single
reader/multiple writer device. The request data area, the reply parameter area, and the
reply data area are empty in the case of device reopening.

typedef struct Fsio_PipeReopenParams {

28

Fs_FileID fileID;
Fsutil_UseCounts use;

} Fsio_PipeReopenParams;

A pipe may become remote due to process migration, therefore it may have to be reo-
pened if the client looses touch with the server. If the server can crashed then the reopen
will fail, but if there has only been a network partition the reopen may succeed. The
request data area, the reply parameter area, and the reply data area are empty in the case
of pipe reopening.

typedef struct Fsio_FileReopenParams {
Fs_FileID fileID;
Fs_FileID prefixFileID;
Fsutil_UseCounts use;
Boolean flags;
int version;

} Fsio_FileReopenParams;

#define FSIO_HAVE_BLOCKS 0x1
#define FS_SWAP 0x4000

The reopen parameters for a file specify the file and the prefix of the domain of the file.
This is needed to validate that the server still has the disk mounted. The
Fsutil_UseCounts are as described above. The flags include FSIO_HAVE_BLOCKS,
FS_SWAP, and FS_MAP to indicate if the client has dirty data blocks, is using the file for
VM backing store, or is mapping the file into its memory. The version number is the ver-
sion that the client has cached. The reply parameters when reopening a file are the
Fsio_FileState described above. The client should verify that the version number it has is
correct, just as it does during an FS_OPEN.

typedef struct FspdevControlReopenParams {
Fs_FileID fileID;
int serverID;
int seed;

} FspdevControlReopenParams;

The file server that stores a pseudo-device file also keeps some state as to whether there
is currently a server process for the pseudo-device so it can prevent conflicts. If the file
server crashes this information has to be restored, and it is done by reopening the
pseudo-device control handle. The fileID in the reopen parameters is that returned from
FS_OPEN when the server process opened the pseudo-device with the FS_PDEV_MASTER
flag. The serverID is -1 if the server process has gone away since the file server crashed.
The seed is used by the file server to generate unique fileIDs for the connections to the
pseudo-device, and this needs to be restored, too. Under normal operation the file server
increments its seed every time a new open is done on the pseudo-device, and it puts the
seed into the low-order 12 bits of the minor field in the ioFileID returned from FS_OPEN.
The I/O server knows about this, and it extracts the seed from the ioFileID so it can
restore it during recovery.

29

typedef struct StreamReopenParams {
Fs_FileID streamID;
Fs_FileID ioFileID;
int useFlags;
int offset;

} StreamReopenParams;

After all the other kinds of I/O handles have been reopened at a server, the client reopens
its stream descriptors that reference the I/O handles. The reopen specifies the streamID
and the ioFileID, so the I/O server can verify that its shadow stream descriptor connects
to the same I/O handle that the client thinks it should. The offset is used to recover the
offset in the server’s shadow stream descriptor. (This isn’t implemented. If the file
server crashes while a stream is shared by processes on different hosts, then the shared
offset is lost. This needs to be fixed, perhaps by adding an offset to the Fs_IOReply
structure so the client can cache the offset.)

33. FS_RECOVERY This is used after a client has completed its state recovery. This
is needed because the server drops regular FS_OPEN RPCs while a client is doing
FS_REOPEN RPCs. Specifically, after a server gets a FS_REOPEN from a client it drops an
FS_OPEN (from that client) until it receives an FS_RECOVERY RPC. The FS_RECOVERY
RPC can also be used by a client to signal that it is begining the recovery protocol, but
this is not necessary. The parameter area of the request message contains a single integer
that contains a flag CLT_RECOV_IN_PROGRESS if the client is initiating recovery, and that
has no flag (zero value) when the client completes recovery.

#define CLT_RECOV_IN_PROGRESS 0x1
#define CLT_RECOV_COMPLETE 0x0

34. FS_DOMAIN_INFO This is used to get information about a file system domain,
including the amount of disk space available. The request parameter area contains the
fileID associated with the prefix of the domain. This is returned from the FS_PREFIX
RPC. The reply parameter area contains a FsDomainInfoResults structure. The request
and reply data areas are empty.

typedef struct FsDomainInfoResults {
Fs_DomainInfo domain;
Fs_FileID fileID;

} FsDomainInfoResults;

typedef struct {
int maxKbytes;
int freeKbytes;
int maxFileDesc;
int freeFileDesc;
int blockSize;

30

int optSize;
} Fs_DomainInfo;

The fileID that is returned is the user-visible fileID that an application program would see
if it did a GET_ATTR_PATH on the prefix. With a pseudo-file-system this is different than
the internal fileID associated with the prefix, which identifies a request-response connec-
tion between the kernel and the server process. The Fs_DomainInfo indicates the max-
imum size of the file system, the number of free kilobytes, the maximum number of file
descriptors, the number of free descriptors, the native blocksize of the file system, and
the optimal transfer size of the file system.

35. PROC_MIG_COMMAND This is used to transfer process state between Sprite
hosts. The request parameter area contains a process ID and a command identifier. The
request data area contains command specific data. The reply parameter area contains a
return status, and optionally some command specific data. The migration commands are
described below, along with their command specific data.

typedef struct {
Proc_PID remotePid;
int command;

} ProcMigCmd;

0 PROC_MIGRATE_CMD_INIT
This is used to request permission to migrate to another host. The remotePid field
of the ProcMigCmd is NIL if the process is leaving its home node. During eviction,
when a process is migrating back home, the remotePid field is the home node pro-
cess ID. The request data area contains a ProcMigInitiateCmd structure, and the
reply parameter area contains the processID for the process on the remote host.

typedef struct {
int version;
Proc_PID processID;
int userID;
int clientID;

} ProcMigInitiateCmd;

The version is a process migration implementation version number to ensure that
the two hosts are compatible. The processID is the ID of the process that wishes to
migrate. The userID is that of the owner of the process. The clientID is the Sprite
hostID of the host issuing the request.

1 PROC_MIGRATE_CMD_ENTIRE
This transfers the process control block. The request data area contains an encapsu-
lated control block. The exact format of the encapsulated control block is machine
specific and will not be described here. The reply data area is empty.

2 PROC_MIGRATE_CMD_UPDATE
This is used to update the state of a migrated process. The request data area con-
tains an UpdateEncapState structure, which contains the few fields of a Sprite

31

process control block that a process can modify.

typedef struct {
int familyID;
int userID;
int effectiveUserID;
int billingRate;

} UpdateEncapState;

3 PROC_MIGRATE_CMD_CALLBACK
Not used.

4 PROC_MIGRATE_CMD_DESTROY
This is called to kill a migrated process. The request and reply data areas are
empty.

5 PROC_MIGRATE_CMD_RESUME
This is called to continue execution of a suspended migrated process. The request
and reply data areas are empty.

6 PROC_MIGRATE_CMD_SUSPEND
This is called to suspend execution of a migrated process. The request and reply
data areas are empty.

36. PROC_REMOTE_CALL This is used to forward a system call from a migrated
process back to its home node. Most system calls are not forwarded, only a few that
depend on state maintained at the home node. The format of the request and reply are
implementation and system call specific, and are not described here.

37. PROC_REMOTE_WAIT This is used when a migrated process waits for child
processes. Communication with the home node is required because synchronization with
process creation, process exit, and waiting is done there. The parameter area contains a
ProcRemoteWaitCmd structure, and the request data area contains an array of processIDs
on which to wait. The reply parameter area is empty and the reply data area contains a
ProcChildInfo structure. (Byte ordering isn’t an issue in the data area because process
migration only works between hosts of the same machine architecture.)

typedef struct {
Proc_PID pid;
int numPids;
Boolean flags;
int token;

} ProcRemoteWaitCmd;

typedef struct {
Proc_PID processID;
int termReason;

32

int termStatus;
int termCode;
int numQuantumEnds;
int numWaitEvents;
Timer_Ticks kernelCpuUsage;
Timer_Ticks userCpuUsage;
Timer_Ticks childKernelCpuUsage;
Timer_Ticks childUserCpuUsage;

} ProcChildInfo;

38. PROC_GETPCB This is used to return the process control block of a migrated
process for implementation of the ps (process status) application program. The request
parameter area contains an integer with value GET_PCB (0x1) or GET_SEG_INFO (0x2).
With GET_PCB the request data area contains the processID (also an integer). The reply
parameter area contains a Proc_PCBInfo structure, and the reply data area contains the
argument string of the process. The Proc_PCBInfo is described in
‘‘/sprite/lib/include/proc.h’’. With GET_SEG_INFO the request data area contains a virtual
memory segment number, and the reply parameter area contains a Vm_SegmentInfo
structure, which is described in ‘‘/sprite/lib/include/vm.h’’.

39. REMOTE_WAKEUP This is used to notify a remote process that some event has
occurred. The process has presumably registered itself via some blocking call such as
FS_READ or FS_WRITE, whose parameters include a Sync_RemoteWaiter structure. The
request parameter area of REMOTE_WAKEUP contains a Sync_RemoteWaiter structure,
and the request data area, reply parameter area, and reply data area are empty. Note that
this wakeup message can race with the process’s decision to wait at the other host. To
foil the race condition a process must be marked as in the process of deciding to wait. In
the Sprite implementation, this is done by clearing a notify bit kept in the process’s con-
trol block. When a REMOTE_WAKEUP RPC is received by a Sprite host, the notify bit in
the process control block is set. Before actually blocking a process (in response to a
FS_WOULD_BLOCK return code) the Sprite kernel checks that the notify bit has not been
set asynchronously via this RPC. If the bit has been set, then the process is not blocked
and it retries its operation immediately. If this technique were not used then notifications
might get lost and hang the process.

40. SIG_SEND This is used to issue a signal to a remote process. The request parame-
ter are contains a SigParams structure. The request data area, reply parameter area, and
reply data area are empty.

typedef struct {
int sigNum;
int code;
Proc_PID id;
Boolean familyID;

33

int effUid;
} SigParms;

The sigNum is a Sprite signal, and the code field is used to modify this. The id is a pro-
cess identifier if the familyID field is zero, otherwise id is a process group identifier. The
effUid is the effective user ID of the signaling process, and this is used to verify permis-
sions.

41. FS_RELEASE_NEW This is used by the I/O server during process migration to
tell the source of a migrated process that it can release an I/O stream that had been asso-
ciated with the process. Recall that fork() and dup() create extra references to a stream
descriptor, so this call is used to release that reference. This cannot be done safely at the
time the process leaves, so it is done as a side effect of the FS_MIGRATE RPC issued from
the destination client. At this time the current offset in the source client’s stream descrip-
tor is also returned to the I/O server, in case it needs to be cached there while the stream
is shared by processes on different hosts. The request parameter area contains the ID of
the stream that migrated, and the reply contains an inUse flag and the current offset. The
inUse flag should be set if their are still processes on the source client that reference the
stream descriptor.

typedef struct {
Fs_FileID streamID;

} FsStreamReleaseParam;

typedef struct {
Boolean inUse;
int offset;

} FsStreamReleaseReplyNew;

42. Bugs and Omissions

This specification is based on the Sprite implementation as of Fall 1989. There are
a couple of known bugs in it, and it is a bit crufty. However, there is a lot of inertia
behind the network interface because changing it requires coordinated changes on all
Sprite hosts. Future changes to the interface will ideally be backward compatible with
this interface by introducing new RPCs that fix certain bugs, while retaining the original
for compatibility with hosts running older versions of Sprite. The known bugs in the
interface are summarized below.

42.1. FS_REMOTE_LINK vs. FS_SYMBOLIC_LINK The Fs_ReadLink (or UNIX
readlink) system call is implemented as an FS_OPEN followed by an FS_READ. The type
field in the Fs_OpenArgs is specified as FS_REMOTE_LINK in the current implementation,
but the server should also allow regular symbolic links to be opened.

34

42.2. Device Attributes Currently, while the I/O server maintains the access and
modify times for a device while it is opened, this information is not pushed back to the
file server when the device is closed.

42.3. Pathname Redirection There is some cruft in the way pathnames are returned
from the server. In some RPCs there is an extra 4 bytes in the data area that precedes the
pathname, but in the Attributes RPCs the padding is gone. This is a hold-over from pre-
byteswapping days when the 4 bytes in the data area contained the prefix length. Simi-
larly, with the FS_RENAME and FS_LINK, there are 8 bytes of junk before the returned
pathname.

42.4. FS_SERVER_WRITE_THRU This flag is currently private to the client side of
the implementation. It could be passed through to the server to force a write-through to
disk. Currently, however, the client and server writing policies are completely indepen-
dent. Ordinarily clients uses a 30 second delay, and servers use write-back-ASAP. This
means that a file ages in the client’s cache for 30 seconds, and then gets scheduled for a
disk write-back after the last block arrives from the client. Note that a client can use
fsync(), in which case the blocks are forced through to the servers disk, and fsync()
doesn’t return until after that has happened.

Index

1 Introduction .. 1
1.1 The RPC Protocol ... 1
1.2 Source Code References ... 1
2 ECHO_2 ... 3
3 SEND ... 3
4 RECEIVE ... 3
5 GETTIME .. 3
6 FS_PREFIX ... 4
7 FS_OPEN ... 5
7.1 FS_OPEN Request Format ... 5
7.2 FS_OPEN Reply Format ... 9
8 FS_READ .. 11
9 FS_WRITE .. 12
10 FS_CLOSE .. 13
11 FS_UNLINK .. 13
12 FS_RENAME .. 14
13 FS_MKDIR .. 15
14 FS_RMDIR .. 15
15 FS_MKDEV .. 15
16 FS_LINK .. 17
17 FS_SYM_LINK ... 17
18 FS_GET_ATTR ... 17
19 FS_SET_ATTR .. 18
20 FS_GET_ATTR_PATH .. 18
21 FS_SET_ATTR_PATH ... 19
22 FS_GET_IO_ATTR ... 20
23 FS_SET_IO_ATTR ... 20
24 FS_DEV_OPEN .. 20
25 FS_SELECT .. 21
26 FS_IO_CONTROL .. 21
27 FS_CONSIST .. 24
28 FS_CONSIST_REPLY .. 25
29 FS_COPY_BLOCK ... 26
30 FS_MIGRATE ... 26
31 FS_RELEASE .. 27
32 FS_REOPEN .. 27
33 FS_RECOVERY .. 29

34 FS_DOMAIN_INFO ... 29
35 PROC_MIG_COMMAND .. 30
36 PROC_REMOTE_CALL .. 31
37 PROC_REMOTE_WAIT .. 31
38 PROC_GETPCB .. 32
39 REMOTE_WAKEUP .. 32
40 SIG_SEND ... 32
41 FS_RELEASE_NEW .. 33
42 Bugs and Omissions ... 33
42.1 FS_REMOTE_LINK vs. FS_SYMBOLIC_LINK 33
42.2 Device Attributes .. 34
42.3 Pathname Redirection ... 34
42.4 FS_SERVER_WRITE_THRU ... 34

List of Tables

1. Sprite Remote Procedure Calls .. 2
2. Source Code References .. 3
3. Sprite Internal Stream Types .. 5
4. Permission Bits ... 6
5. File Descriptor Types .. 7
6. Usage Flags ... 8
7. Device Types .. 16
8. Set Attribute Flags .. 18
9. User-defined File Types .. 19

